
STYRA | WHITE PAPER | SECURING KUBERNETES WORKLOADS 1

Securing Kubernetes Workloads

Kubernetes has officially arrived - with a recent survey from the CNCF stating that 78% of enterprises are
using it in production deployments. Enterprises have moved beyond experimenting, and have placed their
trust in containers, and the infrastructure that supports them. Kubernetes is now mission-critical; and all the
security and compliance rules and regulations of the old world need to somehow be retrofitted onto this
new area. Unfortunately, the old tools for access control like RBAC simply aren’t up to the challenge.

The Kubernetes API - What’s Different?
The Kubernetes API was designed differently than most modern APIs. It is intent-based, meaning that people
using the API think about what they want Kubernetes to be doing, not about how they make that happen.
The result is an incredibly extensible, resilient, powerful and popular system.

At the same time, this intent-based API presents challenges for security. None of the standard access control
solutions (role-based access control, attribute-based access control, access control lists, or IAM policies)
are powerful enough to enforce even basic policies like who can change labels on a pod, or what image
repositories are safe.

Kubernetes Admission Control was designed to solve this problem. Kubernetes Admission Controllers don’t
address access control issues out of the box, but they do allow you to use a WebHook to address authorization
challenges with decoupled policy.

What Needs to Change for Intent-based APIs
The Kubernetes API embraces a fundamentally different paradigm than we’re all accustomed to. Most APIs
today are what we’ll call action-based, meaning that when you think about an API call you’re thinking about
the action you want to execute to change how the software is running. For example, if you want to expose an
application to the internet, you might run the API openport(443) that changes the network settings on their
application so port 443 is open

In contrast, Kubernetes has what is known as an intent-based API, meaning that when you think about an
API call you’re thinking about the state you want that system to be in. You don’t care what actions are
required to make your desired state into a reality. You simply tell the system what you want (your intentions),
and the system figures out how to make that happen — which actions to take to transition the system into

Why RBAC is not Enough for Intent-Based APIs

https://www.styra.com/

STYRA | WHITE PAPER | SECURING KUBERNETES WORKLOADS 2

the desired state. For example, you could say that your application should be running version 1.7 of the binary,
should be using persistent-storage with encryption, and should be connected to the internet. The system
figures out how to upgrade or downgrade the binary, how to turn on encryption, and how to reconfigure the
network to allow an internet connection.

The key architectural difference is that an intent-based system understands both the state the system is
currently in (sometimes called the actual-state) and your intent for what state the system should be in (the
desired-state). The system continually computes the delta between the two and takes whatever action is
necessary to make the actual-state into the desired state. Users can directly change the desired-state
through API calls and rely on the system itself to change the actual-state.

Action-based API

Intent-based API

The Kubernetes API is intent-based. Each API call allows you to specify the desired-state for one of Kubernetes’s
many objects: pods, services, ingresses, configmaps, etc. To send this desired state to Kubernetes, you specify
all the details in a YAML file with the appropriate information. For example, if you want to change the version
of nginx, mount an external volume, or provide additional configuration, then you update the nginx-pod.yaml
file to whatever the desired state should be and use kubectl apply again.

The key takeaway here is that you’re not running an API like updateVersion or mountVolume. You’re changing
some YAML that describes what state the system should be in and saying “make it so” by running apply.

STYRA | WHITE PAPER | SECURING KUBERNETES WORKLOADS 3

The Kubernetes API model comes with several advantages:

• Reduced learning curve. You learn (i) the YAML format for each object and (ii) about a dozen actions,
e.g. create, apply, get, describe, delete. You need to learn the YAML configuration format for each object
anyway (so you can read it). In contrast, action-based APIs additionally require you to learn what could
be 1,000s of actions.

• Extensibility. Kubernetes supports custom resource definitions (CRDs). So in addition to all the usual
pods, services, ingresses, etc. you can define your own. That’s possible BECAUSE the API surface does
not need to be extended to handle new resource types. You just write some YAML that describes the
resource, and invoke the same dozen actions, e.g. create, apply, get, describe, delete.

• Distributed systems. Running large-scale systems on a cloud built using commodity hardware demands
incredible resiliency in the face of failures. Kubernetes’s intent-based architecture allows it to know what
it should be doing, so that when, say, a hardware failure occurs it can try to compensate. Brian Grant
(cotech lead on Kubernetes at Google) has written extensively about Declarative Application Management
and Kubernetes Resource Management and pointed to the Kubernetes API as a key to solving many
distributed-system problems: failures, distribution, auto-scaling, multiple-owners, availability,
performance, reversibility.

Why RBAC is Not Enough for K8s API Security
The challenge with the Kubernetes intent-based API comes when you want to secure and safeguard the
API, when you want to control which people can do what using that API.

Imagine you’re the Kubernetes admin responsible for the operations, security, and compliance of the cluster.
Novice Kubernetes developers need guardrails; security teams needs control and visibility; compliance teams
need help mapping age-old regulations to this brand new system; and you know from your own experiences
which Kubernetes best practices you need to adopt. Ideally you’d enforce those rules, regulations, and best-
practices within Kubernetes itself by setting up access control.

Role-Based Access Control (RBAC) has been the solution for decades, enabling admins to control which
users can run which APIs on which resources. Kubernetes RBAC (available since late 2017) is the first line of
defense. It lets you give read-only access to resources for specific user-groups. It lets you isolate different
user groups (though not entirely) by assigning them different portions (aka namespaces) of Kubernetes. It
lets you restrict permissions for service-accounts. All of which is valuable.

But in contrast to action-based systems where RBAC handles the vast majority of access control needs, RBAC
in Kubernetes provides far less control because of its intent-based API. From the API’s perspective there are
only about a dozen actions, which means that if (for example) Alice can update a given resource, she can
update any portion of that resource.

For example, SREs need to read most of the resources in the cluster so that they can diagnose problems when
they arise. But when an SRE finds a problem on a node, e.g. a noisy neighbor, she may need to drain that node
in order to move the workloads to a different node and mitigate the problem. Unfortunately, the API does not
have drain actions — those are macros provided by the CLI that simply update the annotations on the node.
Using RBAC to try to reach this level of granularity is tedious and complex, to the point that it’s impractical.

The Intent-based K8s RBAC diagram below shows conceptually what you have to work with using RBAC —
you can choose which combinations of the users/actions/resources combinations are permitted.

STYRA | WHITE PAPER | SECURING KUBERNETES WORKLOADS 4

In contrast, imagine for a moment if Kubernetes were action-based (e.g. it included APIs like cordon, drain,
setImage, mountVolume, openPort). Then we could use RBAC to grant read along with cordon and drain but
nothing else. Action-based APIs simply have more names that you can use when writing RBAC policies.

Intent-based K8s RBAC

Users Actions Resources

Allison
Betty
Charlyn
Domingo
Ethan
Felix
Georgina
Hettie
Inga
Jess

create
delete
apply
get
describe

pod1
pod2
ingress1
ingress2
deployment1
deployment2
deployment3
service1
service2

Ficticious Action-based K8s RBAC

Users Actions Resources

Allison
Betty
Charlyn
Domingo
Ethan
Felix
Georgina
Hettie
Inga
Jess

create
delete
apply
get
describe
setImages
openPort
mountVolume
setReplicas
setLabel
setAnnotation
setRestart
setHealth
setLiveness
setInit
setMemLimits
setCPULimits
...

pod1
pod2
ingress1
ingress2
deployment1
deployment2
deployment3
service1
service2

STYRA | WHITE PAPER | SECURING KUBERNETES WORKLOADS 5

In short, the Kubernetes API provides a powerful, extensible, unified resource model, but it is that same resource
model that makes RBAC too coarse-grained for many use cases. RBAC is invaluable for the controls it can
provide, but far more so than other systems, Kubernetes requires additional controls beyond RBAC.

What Do We Need for K8s API Security?
So if RBAC doesn’t provide enough control, what do we need? Let’s look at an example: “all pods must only
use images from trusted repositories” (say, hooli.com). Anytime someone runs, for example, kubectl apply,
then the access control system needs to make a decision based on the user, the action apply, and the YAML
that describes that pod.

To make the right decision, the access control system needs to extract the list of image names (e.g. nginx
and hooli.com/frontend) and do string manipulation to extract the name of the repository (e.g. the default
repo and hooli.com).

One option is to build a bunch of knowledge about Kubernetes resources into the access control system itself.
Then the admin could write a policy about who can, for example, update labels, what the permitted-image-
registries are, and so forth. That’s what most systems do — invent a bunch of entitlements and build a custom
access control system on top.

But building a custom access control system won’t work for Kubernetes because it allows users and vendors to
invent their own YAML formats (Custom Resource Definitions) and install code that implements them. So
Kubernetes’s resource extensibility requires any custom Kubernetes access control system to be extensible itself.

What we really need is an access control system that lets the administrator write policies that:

• Descend through the hierarchical structure of a YAML file.
• Iterate over elements in an array.
• Manipulate strings, IPs, numbers, etc.

As you may have guessed, none of the standard access control paradigms meet these requirements. That
includes role-based access control (RBAC), attribute-based access control (ABAC), access control lists (ACLs),
and even IAM-style policies.

Admission Control to the Rescue
Fortunately, the Kubernetes team foresaw this problem and created an Admission Control mechanism where
you can put controls that go far beyond RBAC and the standard access control mechanisms. The Kubernetes
API server provides a pipeline of access controls, broken into Authorization (e.g. RBAC), and Admission.

Authorization happens on every API call, and Admission happens only on updates (creates, updates, and
deletes). With Authorization you’re provided the following information to make a decision:

• User: user, groups, extra attributes provided by authentication
• Action:path, API verb, HTTP verb
• Resource: resource, subresource, namespace, API group

©2022 Styra, Inc. All rights reserved. styra_wp_securing-kubernetes-workloads_042822

About Styra
We are reinventing policy and authorization for cloud-native. Today’s cloud app infrastructure has evolved. Access,
security, and compliance must also evolve. It’s time for a new paradigm. It’s time for authorization-as-code.

Learn more at www.styra.com

With Admission you’re handed an AdmissionReview object in YAML. It includes all the information about the
resource being modified to make whatever decision you want. You can , of course, build whatever logic you
need to secure your API by writing, deploying, and maintaining custom code that implements the Admission
Control webhook protocol (a simple HTTP/json API).

But if you don’t want to support and maintain custom code, you can use the Open Policy Agent as a Kubernetes
admission controller and leverage its declarative policy language. That language includes the required
expressiveness outlined above: iteration, dot-notation, and 50+ builtins for string-manipulation and the like,
as well as a community of practitioners with best practices built from hundreds of production deployments.

New Technologies Need New Solutions
The Kubernetes API changes can be summarized as follows:

• Kubernetes’s intent-based API lets users focus on what state they want Kubernetes to be in, not how to
achieve it.

• One of the core benefits of the intent-based approach is that it enables Kubernetes to be resilient in the
face of failures. Because the system knows what it should be doing, when failures happen, Kubernetes
knows how to recover.

• Kubernetes’s API also provides tremendous extensibility. Users can create their own custom resources
without having to extend the API.

• The challenge with Kubernetes’s API is that an access control decision may need to analyze an arbitrary
YAML document, e.g. using dot-notation, iteration, and string-manipulation. Standard access control
systems like RBAC, ABAC, ACLs and IAM simply aren’t expressive enough.

The Kubernetes team introduced Admission Control to give users additional power to control the API.
Creating effective admission control policies to secure your workloads can be simplified with declarative
authorization solutions like Styra, or Open Policy Agent. Using these solutions as Kubernetes Admission
Controllers, gives you the needed expressiveness to overcome new access challenges with the granularity
needed to be truly effective.

http://www.styra.com
https://www.styra.com/

