
In this ebook, we lay out the key drivers for managing policy and authorization
at scale across the cloud-native stack.

Specifically:
 Establishing a standard building block for policy and authorization
 Leveraging Open Policy Agent (OPA)
 Scaling OPA: creating an environment that makes seamless, rapid
 collaboration and automation possible
 Managing OPA at Scale: empowering enterprise-wide teams to take
 advantage of policy-as-a-code for unified policy and authorization

With the rapid growth of cloud-native
services and containerized applications,
enterprises have been facing a quiet,
universal and mounting crisis: there has
been no way to create and deploy
consistent, secure and scalable rules
across the cloud-native stack. This is not an
insignificant challenge, as these rules,
known as policy and authorization, are at
the foundation of building secure and
scalable applications — the core
differentiators of cloud-native business.

But compared to traditional, monolithic
application environments, managing these
rules in the cloud is a much more difficult
challenge — by orders of magnitude. Thus
far, organizations have had no good way to
manage this complexity and chaos at scale.

The challenge is that the cloud is something
like the “Wild West” — ungoverned by any
single standard — when it comes to policy
and authorization, or the “who can do what”
and “what can do what” rules that make
security and scalability possible. While
organizations desperately need a
comprehensive standard that spans every
cloud-native environment, such rules are
instead maddeningly unique to every
organization, development team and
microservice — hand-crafted, in different
programming languages, with bespoke
logics. It seems like a contradiction that
these policies must, at the same time, scale
uniformly across the entire cloud-native
stack — from Kubernetes, to microservices,
to application authorization, to
infrastructure management, to the CI/CD
pipeline to much more.

Introduction

2© Styra, Inc. All Rights Reserved.

Organizations are
aligning around a
common vision about
how to unify policy
and authorization
across all
cloud-native
environments.
Specifically, they’re
looking at how to:

Modernize how they create, validate and
enforce cloud-native rules across teams,
services and environments

Streamline and scale production

Define rules and validate changes for
security and compliance

Manage chaos and complexity in a
uniform and consistent manner

Enable seamless collaboration across
the enterprise

And scale these policies must. Indeed, organizations are learning they must adopt a consistent
policy framework across the entire cloud. By “solving” this authorization problem,
organizations can immediately begin to improve security and compliance, mitigate human
error and misconfigurations, accelerate application development and reduce the “mental tax”
of policy creation. Moreover, wth a standard policy framework in place, developers can avoid
continually reinventing the wheel — and instead spend their time on revenue-driving tasks like
building better applications that differentiate the business.

3© Styra, Inc. All Rights Reserved.

5

10

19

Chapters

Establishing a Standard
Building Block for Policy
and Authorization

Scaling OPA:
Create an environment that makes it
possible for collaboration to happen
quickly and smoothly

OPA at Scale:
Empowering the enterprise to take
advantage of the speed, security and
value of policy-as-code

4© Styra, Inc. All Rights Reserved.

Establishing a Standard Building Block
for Policy and Authorization

Manually “doing security” in today’s
cloud-native environments is like a
never-ending game of whack-a-mole where
you can see only a fraction of the moles.
The reason? Legacy policy and
authorization is centered around people,
accounts and roles — who can access what.
Compounding this issue is the fact that
traditional monolithic applications typically
have authorization systems hard-coded into
the apps themselves.

In order to meet the requirements of today’s
dynamic, containerized application
environments, policy and authz must extend
to control services, software-defined
infrastructure and application code itself.
We must control not just who, but what can
do what to build, maintain and prove
security and compliance.

But in creating, deploying and managing
such policies, enterprises face a number of
thorny, interrelated challenges. The first is
that software development has accelerated
dramatically. Indeed, enterprises have

moved from updating software monthly or
quarterly, to dozens of times per day. At the
same time, developers and developer
teams are expected to manage policy and
authorization themselves — including
security policies — even as developers are
asked to prioritize time-to-market above all
else. The result, on the one hand, is that
there are as many policies— each using a
di�erent coding language, tooling, and logic
— as there are development teams. Such
disparate policies work very poorly together
at scale, are difficult to analyze for security
and compliance, and quickly become
impossible to manage. On the other hand,
developers are always security experts,
which means that in the rush to deploy
code, security often gets short shrift.

5© Styra, Inc. All Rights Reserved.

The way to solve these challenges is to
provide developers with better tools for
creating and managing policies at scale,
and for shifting security left — providing
every development team with consistent,
validated security policy, in other words (it
also becomes difficult to port skills, tools,
people and processes between teams).

At the same time, enterprises have moved
from updating software monthly or
quarterly, to dozens of times per day. When
developers are asked to prioritize
time-to-market above all else, this means
that security policies, which are also
managed by developers today, often get
short shrift. This means developers need
better tools for policy building and to shift
security left, so that speed and security are

no longer at odds in a software-defined
world. This also means that the traditional
way of managing policy and authorization is
simply unworkable.

The step on that journey is to adopt a
standard building block for managing
cloud-native policy and authorization. This
standard must be understandable across
not only development teams, but by every
technology in your cloud-native production
environment. In the same breath, you also
need to provide every development team
with validated, secure, performant,
fine-grained policy controls. This ensures
that you can have not only consistent
security and compliance, but also that
security policies and skills are portable
across teams, services, clusters, clouds —
your entire organization.

In light of these challenges, many
companies are turning to the open-source
project Open Policy Agent (OPA), created by
Styra, and now part of the Cloud Native
Computing Foundation. A general-purpose
policy engine, OPA lets organizations unify
policy and authorization across the
cloud-native stack.

OPA is a graduated project within the CNCF,
sharing that distinction with the likes of
Prometheus, Envoy, Helm and even
Kubernetes itself. This means OPA is a
mature project, with strong, active
community, and proven deployments, in
business-critical production environments
for hundreds of cloud-native leaders,
including companies like Netflix, Atlassian,
Goldman Sachs and many more. OPA is
domain-agnostic and highly flexible and
extensible, which means that it works in

Leveraging Open Policy Agent (OPA) - the open-source, do-it-all policy engine

6© Styra, Inc. All Rights Reserved.

virtually any cloud-native environment, for
any policy use case. As a result, OPA enjoys
a rich off-the-shelf integration ecosystem
and a thriving developer community,
growing at a pace of over a million
downloads a week. Its high-level declarative
language lets you specify policy as code
and, and through simple APIs, offloads
policy decision-making from your software.
This means that, with OPA, you can create
consistent, secure and widely applicable
policies across your entire cloud-native
ecosystem. It also means that updating or
changing policy requires no changes to
application code — since OPA is decoupled
and standalone. As a result, OPA has
become the de facto standard for policy and
authorization in the cloud.

Because of the popularity of OPA, many
developers are at a stage where they’re
either experimenting with policies, testing
out specific use cases or moving OPA into
full production in business-critical
environments.

1. Build test policies to validate OPA in your
environment.

2. Get your team on board with an OPA pilot
project.

3. Build out a narrowly-defined OPA use case
for production.

4. Expand your OPA policies and strategy to
solve adjacent problems.

So, how do you create an
organization-wide standard for policy
and authorization? Here are some tips
for facilitating OPA adoption:

7© Styra, Inc. All Rights Reserved.

Use Case: Netflix microservices authorization

Policy and authorization are developer-level
challenges that have business-level
implications. For instance, Netflix, an early
pioneer of microservices, needed a way to
manage service-level authorization for the
dozens of services that comprise its back
end — services that make Netflix video
services possible. Put simply, Netflix
needed a consistent policy toolset that each
development team could use to control
service-level access to the services they
controlled, across numerous enforcement
points, such as HTTP APIs, SSH and more.
With such a complicated microserservices
ecosystem where authorization decisions
needed to happen in less than a
millisecond, it was simply not possible for
Netflix to massively scale its services
without a robust policy standard; an
amalgam of bespoke policies would
introduce unreasonable latency and make
the Netflix backend impossible to manage
at scale.

As such, OPA was a natural fit for the
Netflix environment. It allowed dozens of
teams to standardize how they create and
enforce policy with a consistent
policy-as-code language, offload
authorization decisions to the open-source
policy engine and enable Netflix to make
global changes to authorization policy at
any moment across its back-end
ecosystem.

Benefit to the company

The business benefits when every team
leverages a unified framework for defining,
validating and deploying policy and
authorization. Not only does this save
teams from constantly reinventing the
wheel (just as no one has to reinvent
container code, encryption standards, SSO
protocols or MFA for authentication), it also
reduces manual error while increasing
productivity and automation. In other words,
what was once a complex, time-intensive,
impossibly manual project becomes a
simple, streamlined process that improves
both speed and security.

8© Styra, Inc. All Rights Reserved.

With a standard building block for policy
and authorization in place, organizations
can:

+ Quickly create and automatically enforce
policy across dynamic multi-cloud and
containerized environments.

+ Build security, compliance and operational
errors directly into their processes and cloud
infrastructure — helping to eliminate errors
and close security gaps.

+ Express simple policies over complex,
hierarchical data and bring order to the chaos.

+ Stop mistakes before they happen and focus
on better building better apps, rather than on
correction.

Who’s doing it well:

Many leading enterprises
use OPA in full,
business-critical
production, including
Atlassian, Chef, Netflix,
CapitalOne, Goldman
Sachs, TripAdvisor,
Pinterest, Intuit, T-Mobile
and many more.

9© Styra, Inc. All Rights Reserved.

Scaling OPA: create an environment that makes it
possible for collaboration to happen quickly and
smoothly

At a certain point, OPA users move from
the sandbox and into production — and
eventually to using OPA at true scale.
Whether that means using OPA in a
rapid-scaling microservices environment or
across numerous services and teams, there
are a number of considerations you will
want to take to ensure seamless
development and collaboration.

One thing to bear in mind: standards like
OPA become more powerful the more
widely they are used — just as with any
standard, like Kubernetes, APIs or even
HTTP. When many teams use a consistent,
domain-agnostic approach to policy
building, it enables your organization to
establish well-vetted best practices, speed
further adoption and automate policy
processes for many developers.

Indeed, OPA users often find that once they
invest in one use case, such as Kubernetes
admission control or service mesh
authorization, they can reuse much of their
knowledge, tools and policies to solve

authorization problems in adjacent areas.
There is a “network effect” with OPA, and
new services will fall into scope as your
usage of OPA grows. This network effect
also also makes it easier to port skills and
processes across the organization. For
instance, it becomes much easier to
collaborate across times, move engineers
to new projects, promote from within, and
hire rockstars with key expertise when you
use standardized tooling. At the same time,
the risk of losing key players is significantly
diminished, as policy systems don’t rely on
custom tribal knowledge to run.

10© Styra, Inc. All Rights Reserved.

Rolling Out OPA and Policy-as-code

In rolling out OPA, we can distinguish
between two stages: the Experimentation or
Pre-Production Stage and the Production
Stage. In combination, these stages take
you from picking your OPA domain or use
case (like Kubernetes or Envoy) and
learning how to build policies, to deploying
OPA in your environment, monitoring your
deployment and logging decisions. These
steps also enable you to not “just” learn
OPA and Rego, its high-level declarative
policy language, but treat policy-as-code
just like all other code (as a first-class
citizen).

As you work to deploy OPA, these are the
boxes your organization should aim to tick.

Towards using OPA at scale, there are a
number of best practices that can help your
organization on its journey to create an
environment for seamless, rapid

collaboration — and managing secure,
consistent policy everywhere.
Use this step-guide to for rolling out and
standardizing OPA.

11© Styra, Inc. All Rights Reserved.

Experimentation and Pre-Production Stage

Phase 1 Requirements (determine the playing field, ground rules and player data)

1. Choose your domain. Kubernetes? Envoy? Your CI/CD pipeline? Terraform? From
the universe of tools across the cloud-native stack that integrate with OPA, pick a
place to start for your project.

2. Assemble real-world policy. Often stored in wikis, PDFs, or in people’s heads,
these policies will translate into the policy-as-code you build with OPA. Clearly
document this real-world policy in well organized spreadsheets so your team has
a shared understanding.

Declarative
Authorization
Service

Management Console
Policy authoring and versioning Testing and impact analysis

Policy distribution Telemetry Logging

12© Styra, Inc. All Rights Reserved.

3. Understand data dependencies. OPA works by making decisions about structured
data (eg. JSON) — specifically, whether data conforms to or violates a policy. If you
want to write a policy that ensures only certain types of users can access certain
types of workloads, for instance, or that only PCI-compliant containers can talk to
each other, you will need to feed OPA the data that defines which users and
workloads have a role, or which containers are PCI-compliant. Work to
understand where those parameters are defined.

4. Choose enforcement points. OPA decouples policy decision making from
enforcement, meaning OPA decisions are handed off to be enforced by various
APIs in your environment. In a microservices environment, that might be an Envoy
proxy or sidecar authorization API; In Kubernetes, it might be an Admission
Control validating webhook (if you want to control which containers can run in a
cluster) or RBAC (if you want to control who or what can access that cluster).

1. Configure your services to use OPA. Whether
you’re writing policy for an Envoy proxy,
Kubernetes Admission Control or a Kafka
database, you will need to configure that service to
talk to OPA. (Thanks to the OPA community, there’s
extensive documentation on this and the following
points, including proven methods for more than 30
OPA integrations, see openpolicyagent.org.)

2. Deploy OPA. Simply download OPA.

3. Configure OPA. Ensure that OPA can
communicate decisions to your services/APIs.

4. Harden OPA configuration. Lock down your OPA
configuration, to ensure that OPA instances can
only communicate with the appropriate
Services/APIs.

Phase 2 Enter OPA

13© Styra, Inc. All Rights Reserved.

Phase 3 Author Policy

1. Write and version control Rego. To create policy-as-code that’s understandable by
OPA, users will need to get a handle on Rego, OPA’s high-level declarative policy
language. Fortunately, there is comprehensive documentation about how to get
started with, and master, Rego. Once you’re familiar with Rego, you will need to
version control your policies to ensure that they work as intended, just like you
would with any other code in your application ecosystem. While learning Rego can
seem like a challenge at first, remember that it enables teams to “learn once, and
use many times” — because Rego is a single, unified policy language that allows
your teams to write and deploy policies anywhere in your environment in the
same way.

2. Decide and learn input and decision schemas. Once you understand your data
dependencies, determine how to best feed that information to OPA, as structured
JSON Data, so it can make an evaluation as quickly as possible.

3. Modularize policy and delegate for collaboration. There are many ways to
configure OPA and its corresponding policies. Determine whether it makes more
sense, for example, to maintain one large set of policy that iterates through a
number of factors to make a decision, or if it would be better to maintain separate
instances of OPA that each process one of those factors and communicate their
decisions to the other OPA instances.

14© Styra, Inc. All Rights Reserved.

15© Styra, Inc. All Rights Reserved.

Production Stage

Phase 4 CI Stage

1. Assemble policies from di�erent repositories. Make sure you have all of your
policy-as-code in one place for streamlined deployment.

2. Test policies. Perform tests — both unit tests, and QA to validate that your
policy-as-code works as expected. Tests are one of the best ways to lend OPA
credibility in your organization (and put security and compliance teams at ease) —
all a part of policy-as-code as a first-class citizen. Moreover, testing can help to
codify developers’ understanding of OPA and creates a safety net when creating
new policies.

3. Create policy build artifacts (e.g. Bundles). Policy Bundles are the way that OPA
policies are pushed through your build pipeline and deployed to OPA instances. On
the OPA end, you can also configure the Discovery feature, which instructs OPA
instances to automatically download new discovery bundles when appropriate.

Successfully deploying OPA at enterprise scale
entails more than just learning Rego;
developers and platform engineers will also
need to account for elements like the CICD
pipeline, monitoring and logging. However,
these stages will be familiar to any developer
or platform engineer, as they are standard
elements of any software lifecycle. Because
OPA deals with policy-as-code, you can thus
treat OPA policies like any other piece of code
in your ecosystem — like a first-class citizen.

Phase 6 Monitor and Orchestrate

1. Ensure that OPA is managed just like any other service in your organization, for
example, you could use orchestration to ensure:

 a. OPA health. Are your OPA instances alive and acting as expected?

 b. Policy version. Are your OPA instances up-do-date?

 c. Data version. Is the data that feeds OPA up-do-date?

Phase 7 Log

1. Record decisions for audit. For security and compliance, you will need to prove
that OPA did what it was supposed to do, in ways that non-technical professionals
can understand. Ensure that you funnel OPA decision logs into security and
compliance pipeline tools and hold onto that information for an appropriate length
of time, whether that’s days, months or years.

16© Styra, Inc. All Rights Reserved.

Phase 5 Deploy!

1. Deploy policy to OPA. It’s time to deliver your policy-as-code to your OPA
instances.

2. Deploy / refresh data to OPA. Define how frequently OPA should refresh its data.
For instance, if OPA is making admin access control decisions, should OPA check
to see who is on pager duty once every ten seconds, ten minutes or once per day?

3. Deploy common libraries to all OPAs that depend on that library. Ensure that every
OPA instance has the information it needs to make good decisions. For instance, if
OPA is checking whether containers are PCI-compliant, does it have access to that
data that says whether or not they are?

Explore the OPA
ecosystem and
well-documented
use cases

As a domain-agnostic
building block with an
ecosystem of more
than 30 o�-the-shelf
integrations, OPA has
many use cases with
many tools across
cloud-native stack.
Some examples
include:

Kubernetes Admission Control

Microservices or service mesh
authorization (application and
service-level) with tools like Envoy, Kong
and Istio

Infrastructure-as-a-service validation
with tools like Terraform

CI/CD pipeline policy enforcement with
tools like Spinnaker

Docker or Linux authorization

Access control for Kafka topics

Database and data filtering with
Elasticsearch or SQL databases

Edge policy enforcement via WASM for
CloudFlare Workers

Security controls for SSH and sudo, or
anything that uses the HTTP API

And many more

17© Styra, Inc. All Rights Reserved.

Use Case: Atlassian

Atlassian is the provider of numerous
popular cloud products, such as Jira, Trello,
Confluence and BitBucket. To provide these
products at scale, Atlassian has built and
now hosts more than 1,000 services
distributed around the world. As is the
experience of many companies,
authorization was not initially viewed as
platform concern. The inevitable
consequence was that many of the services
implemented their own authorization
mechanisms — resulting in services that
were individually security, but an
environment that was difficult to control
and audit. With the help of OPA, Atlassian
built a global authorization platform that
made it possible to centrally manage and
audit authorization decisions for its global
network of services. With OPA in place,

Atlassian could continue to scale its
services worldwide while ensuring robust
security for the enterprise and its millions
of customers.

Benefit to the company

It is essential for any cloud-native company
to be able to unify and port tools, processes
and skill sets across every cloud-native
environment. By scaling a standard building
block like OPA, companies can deploy
consistent and well-validated security and
authorization policies across every team,
cluster and cloud. This is critical for not
only partnering seamlessly witty internal
teams, but an ecosystem of integration
vendors that support your cloud-native
services. Moreover, when security policy
and authorization is automated, compliance
audits and change validations to your
environment become as simple as running
a script.

18© Styra, Inc. All Rights Reserved.

OPA at scale: empowering the enterprise to take
advantage of the speed, security and value of
policy-as-code

The cloud-native stack is built of
abstractions used to manage other
abstractions. At a certain point,
organizations that deploy OPA at scale,
across teams or environments, have a need
to adopt higher-level strategies to better
operationalize and manage their policy
operations. The complexity of the modern
stack is compounded when you consider
that the teams that manage that stack use
different languages, tooling and logic to
manage each individual part. With so many
custom, hand-built, one-off policies in
place, scale becomes an exercise in
maintenance instead of innovation.

OPA provides a single, unified language and
tooling framework, to eliminate the
overhead that stems from building and
maintaining custom policy silos. This
standardization empowers teams to
eliminate the burden of rolling their own
policy languages and engines, and provides
a seamless way to collaborate across
teams. However, even with a standardized
policy language, teams still have to manage

policy distribution, revisions and impact
analysis. As with any tool, scale requires
infrastructure to mitigate overhead, rework
and one-off manual effort.

The end goal of a tool like OPA is to free
developers to focus on business-critical and
differentiated problems and building better
apps. After all, application development
already happens at an unprecedented speed
and scale. Yet, as with any distributed
solution, it can become time-consuming to
ensure all your OPA policy evaluation points
are effectively managed, validated,
maintained, distributed and monitored in
production.

19© Styra, Inc. All Rights Reserved.

It is worthwhile to consider that, while OPA
was built for evaluating and enforcing rules
consistently across the stack — and does so
with aplomb — it was not designed, on its
own, to manage the entire policy lifecycle.
For instance, OPA alone is not concerned
with:

+ Distributing and managing policy across
numerous environments

+ Providing UIs for authoring and constructing
policies

+ Aggregating and reporting comprehensive
telemetry on OPA decisions

+ Monitoring environments to spot and fix
policy violations

+ Validating policy changes against historical
data

As a result, managing OPA at scale can
likewise become a familiar (if not much
more consistent and secure) game of whack
a mole. Ultimately, the goal of OPA is still
massively powerful, on its own; but in light
of these factors, there will be a number of
considerations organizations make in order
to more seamlessly and securely manage
OPA at scale.

OPA policy distribution

At a certain maturity point during every
rollout — complexity of environment, level
of business-criticality, level of dependency

between teams and so on — it simply
makes sense to leverage a control or
management plane for OPA policy
management and distribution. Typically,
this is driven by the need to move engineers
on to other projects, and/or security and
compliance imperatives. As OPA provides
APIs that enable control and visibility over
policy enforcement, it’s possible to build a
custom system for policy management and
distribution.

Some very large early OPA adopters, such
as Netflix and Pinterest, indeed have opted
to fashion their own bespoke OPA control
planes. This provides companies with useful
functionality that fits their specific
environment; however, it’s a significant and
time-intensive undertaking to build a
custom control plane, and of course
requires resources to maintain it, once
deployed. Many OPA adopters find
themselves in a build vs. buy situation,
when confronted with designing and
maintaining a custom solution vs. opting for
a more standardized approach.

20© Styra, Inc. All Rights Reserved.

Integrating OPA with GitOps

Cloud-native organizations are increasingly
moving to more mature GitOps workflows,
as they provide a robust framework for
continuous delivery. To integrate OPA with
GitOps, organizations will need a way to
store and maintain their policy-as-code in
the Git repository, as a single source of
truth. This also means, in practice,
developers will need 1) an ability to validate
any policy changes before committing or
deploying them and 2) the ability to
automatically fetch policy bundles from Git
and distribute them to the correct OPA
instances across clusters, clouds and
teams.

Simplifying policy building

Rather than custom code OPA policy in
Rego every time, most organizations and
teams look for simpler ways to build, test
and deploy policies that can be reused
across teams, across clusters or across
clouds. As such, it can be helpful — moving
beyond policy templates and macros — to
build shared policy libraries that any team,
at any OPA skill level, can use. This not only
eases the burden of policy creation, but
accelerates the continued adoption (and
automation) of policy building in the
enterprise.

For one example, it can become manually
intensive to write JSON schema for less
OPA-savvy developers to follow — and then

have to translate the file Rego to run tests
in OPA, and then report back the results to
developers.

It would be better to instead avail those
developers with a shared, tested and
approved library of OPA policies and tests
to increase deployment speed, limit the risk
of human error and unload the burden of
interpretation and validation from on staff
OPA experts.

Pre-runtime validation

Because any change to policy and
authorization can result in broken apps or
access problems in critical environments,
OPA users need to review and validate
changes before runtime. This includes
things like compliance checks, unit testing
and policy output validation. Safeguards like
GitOps peer reviews can help to minimize
any errors here, but as human beings,
developers sometimes make mistakes or
get overburdened — particularly when
policy is run at scale across dozens of
services or millions of instances. As a
result, OPA users need to find automated
ways to test their policies and validate
changes before committing them. One best
practice is to keep a record of all historical
OPA policy decisions and automatically test
policy changes against them — ensuring
that future changes act as predicted,
helping to minimize security and
compliance risk.

21© Styra, Inc. All Rights Reserved.

Comprehensive monitoring and
reporting

When scaled across the organization, OPA
policies naturally become critical for
compliance, security and privacy. As such,
effective monitoring and reporting becomes
mission-mandatory. As such, companies
should be able to automatically feed
anomalous behavior, high-risk rule
violations or outages from across your
environment directly into DevSecOps
processes and SIEMs to enable rapid
response.

At the same time, reporting also becomes
critical for communicating the value and
effectiveness of your policy-as-code
systems to other teams, decision makers
and non-coding peers. You should be able to
provide detailed decision logs — ideally
compiled into clear visuals — to
demonstrate this value, and prove where
controls have been deployed to increase
security or maintain compliance. In the
same vein, it can also be helpful to show
where critical policy implementations or
updates have taken effect, along with the
value of those implementations. In other
words, you should be able to provide the
value of your efforts to security and
compliance teams, auditors and decision
makers — audiences who typically are not
coders, and thus should not be expected to
read through your policy-as-code
implementation.

E�cient policy distribution across
environments

Gaining consensus for just one policy can
take a substantial amount of
cross-functional coordination between
numerous teams. As such, it can become
challenging to maintain policy consistency
across numerous teams, clusters, clouds
and more. As OPA scales, you will need to
simplify and streamline how you distribute
policies across those environments.
Oftentimes, this takes shape as a formal
process or mechanism used to instill OPA
policies consistently into numerous other
processes across your organization.

The Business Benefits of Policy
Standardization

The wider the adoption of OPA in your
organization, the most cost-effective it
becomes. When enterprises democratize
policy and authorization with a consistent
standard, they can improve security and
compliance, accelerate application
development and increase automation,
enterprise-wide.

22© Styra, Inc. All Rights Reserved.

With OPA running at scale, organizations
can:

+ Distribute security and compliance best
practices to every team, cluster and cloud
across the enterprise

+ Manage policies globally, while enabling
complete visibility into every authorization
decision across the cloud-native stack

+ Eliminate policy silos, along with the need to
hard-code policy logic direction into services

+ Protect against intrusions, prevent lateral
movement and hot-patch policies globally to
thwart attacks in real time

+ Integrate policy-as-code with established
GitOps processes

Use Case: SugarCRM

SugarCRM, a leading customer experience
solutions provider with millions of users,
needed modern infrastructure security and
compliance controls that worked with
software-defined systems and could be
tracked to prove compliance.

Although SugarCRM used significant
automation, the DevOps/platform team still
relied on time-intensive manual processes
that resulted in manual errors and
unnecessary costs (such as unneeded
external load balancers). The company was
already using OPA, but they knew that to
properly scale out their security and
compliance guardrails, they needed to
establish governance around OPA, while
codifying policy and automating best
practices. SugarCRM decided to use Styra
DAS as a unified control plane for OPA,
allowing the company to operationalize OPA
policy in production across numerous
clusters and automate compliance-as-code
in the CI/CD pipeline. As a result of
operationalizing OPA, SugarCRM was able
to eliminate load balancer costs and risks
with policy guardrails, reduce time spent
identifying issues and applying standards,
simplify audits and reporting with
policy-as-code and minimize human errors,
security gaps and downtime.

23© Styra, Inc. All Rights Reserved.

Conclusion

As you can see, there is a great opportunity to manage Open Policy Agent at scale and best
support your business, but there are critical elements that need to be in place to future-proof
your authorization and policy. Here’s a quick recap:

Styra is the creator of Open Policy Agent (OPA), the open source project dedicated to Cloud-native authorization.
OPA was created to address the exponential complexity brought about by today’s cloud-native application
environments. Legacy approaches to authorization can’t scale to meet CICD/DevOps requirements, and can’t
handle cloud-dynamism or today’s privacy needs because they’re only focused on people, roles, and accounts.

OPA extends authorization beyond people and accounts to infrastructure and code, allowing enterprises to protect
applications as well as the software-defined platforms they run on. Styra Declarative Authorization Service (DAS)
is the fastest and easiest way to operationalize OPA at scale across Kubernetes, microservices or custom APIs.
Developers, DevOps, and Platform Engineering teams have proven Styra solutions in production to mitigate risk,
reduce human error, and accelerate application development in today’s dynamic multi-cloud world.

Styra DAS delivers security-as-code for cloud-native. Operational, security, and compliance teams rely on Styra
DAS and OPA to quickly create and automatically enforce policy across dynamic multi-cloud environments. Teams
can build security, compliance, and operational guardrails directly into their infrastructure—to eliminate errors,
and close security gaps. Through its open-source and commercial products, Styra provides the management,
intelligence and governance to implement and understand policy across the new stack.

24© Styra, Inc. All Rights Reserved.

Phase 6:
Ensure that OPA is managed just
like any other service in your
organization.

Monitor &
Orchestrate

Phase 7: Log Record decisions for audit.

Phase 4: CI Stage Assemble policies from di�erent
repositories.

Test policies.
Create policy and build artifacts
(e.g. Bundles).

Phase 5: Deploy! Deploy policy to OPA. Deploy/refresh data to OPA.
Deploy common libraries to all
OPAs that depend on that library.

Phase 3: Author Policy Write and version control Rego.
Decide and learn input and
decision schemas.

Modularize policy and delegate
for collaboration.

Phase 2: Enter OPA Configure your services
to use OPA.

Deploy OPA. Configure OPA. Harden OPA configuration.

Choose domain Assemble real-world policy Understand data dependencies Choose enforcement pointsPhase 1: Requirements

